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[1] The Gravity Recovery and Climate Experiment (GRACE) twin satellites observe time
variations in Earth’s gravity field which yield valuable information about changes in
terrestrial water storage (TWS). GRACE is characterized by low spatial (>150,000 km2)
and temporal (>10 days) resolution but has the unique ability to sense water stored at all
levels (including groundwater) systematically and continuously. The GRACE Data
Assimilation System (DAS), based on the Catchment Land Surface Model (CLSM),
enhances the value of the GRACE water storage data by enabling spatial and temporal
downscaling and vertical decomposition into moisture components (i.e., groundwater, soil
moisture, and snow), which individually are more useful for scientific applications. In this
study, GRACE DAS was applied to North America, and GRACE-based drought
indicators were developed as part of a larger effort to investigate the possibility of more
comprehensive and objective identification of drought conditions by integrating spatially,
temporally, and vertically disaggregated GRACE data into the U.S. and North American
Drought Monitors. Previously, the drought monitors lacked objective information on deep
soil moisture and groundwater conditions, which are useful indicators of drought. Extensive
data sets of groundwater storage from U.S. Geological Survey monitoring wells and soil
moisture from the Soil Climate Analysis Network were used to assess improvements in the
hydrological modeling skill resulting from the assimilation of GRACE TWS data. The
results point toward modest, but statistically significant, improvements in the hydrological
modeling skill across major parts of the United States, highlighting the potential value of a
GRACE-assimilated water storage field for improving drought detection.
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1. Introduction
[2] Accurate characterization of the timing, duration, and

severity of drought events is extremely important because
of droughts’ potentially devastating impacts on society.
Droughts affect more people than any other natural hazard
[Wilhite, 2000] and the National Drought Mitigation Center
(NDMC) has estimated the average annual economic loss in
the United States due to drought at $6–8 billion, more than
any other type of disaster [Western Governors’ Association,
2004].

[3] The U.S. and North American Drought Monitors
[Svoboda et al., 2002; Lawrimore et al., 2002] have been
successful in defining, monitoring, and predicting drought
and have proven to be valuable tools available to water
resource managers and decision makers for assessing and
mitigating drought impacts and for reducing the vulnerabil-
ity of society to drought. However, the drought monitors
(DM) rely heavily on precipitation indices and subjective
information, and they do not currently incorporate system-
atic observations of subsurface water storage because of
the scarcity of reliable and objective information. Ground-
water levels in near-surface unconfined or semiconfined
aquifers are particularly well suited to drought monitoring
because groundwater storage reflects meteorological condi-
tions occurring over timescales of days to years, whereas
near-surface water stores respond more quickly to rainfall
(or lack thereof). In other words, on the timescales of
droughts, which generally develop over a period of weeks
to months and can last for a decade or more, groundwater
levels respond (absent other influences) somewhat propor-
tionally to the degree and persistence of anomalous hydro-
climatic conditions [Mishra and Singh, 2010]. Further,
groundwater is a valuable resource that is often strained
when other sources of water are scarce. However, continu-
ous observation of large-scale groundwater storage in space
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and time is impaired by inadequate well networks and lim-
ited capacity to quantify groundwater storage from space.

[4] Satellite observations of the Earth’s time-variable
gravity field from the Gravity Recovery and Climate
Experiment (GRACE) mission [Tapley et al., 2004] enable
reliable detection of variations in total terrestrial water stor-
age (TWS; i.e., the sum of groundwater, soil moisture,
snow, surface water, ice, and biomass), thereby addressing
the observational gap of monitoring regional to continental
scale water storage changes on a systematic basis. Since its
launch in March 2002, GRACE has provided unprecedented
observations of water storage dynamics at the basin to conti-
nental scale [Wahr et al., 2006], which have improved quan-
tification and understanding of hydrologic states and fluxes
at regional to global scales; GRACE observations have been
used for inferring terrestrial freshwater discharge [Syed
et al., 2008], evapotranspiration [Boronina and Ramillien,
2008; Rodell et al., 2004; Ramillien et al., 2006; Sheffield
et al., 2009], the mass balance of ice sheets [Chen et al.,
2009a; Velicogna, 2009] and glaciers [Luthcke et al., 2008],
and the water balance of lakes [Swenson and Wahr, 2009].
Groundwater [Rodell et al., 2007, 2009; Strassberg et al.,
2009; Swenson et al., 2008; Yeh et al., 2006] and snow [Niu
et al., 2007] have been isolated from GRACE TWS using
auxiliary information. GRACE-based storage changes are in
good agreement with those obtained from land surface model
(LSM) simulations [Güntner, 2008; Syed et al., 2008] and in
situ observations [Rodell et al., 2007; Swenson et al., 2006;
Syed et al., 2005; Yeh et al., 2006], and the utility of GRACE
for characterizing extreme drought has been demonstrated in
a number of recent studies [Yirdaw et al., 2008; Chen et al.,
2009b; Leblanc et al., 2009]. Thus the potential to use
GRACE observations to fill the current need for subsurface
water information in the drought mapping process is evident.

[5] While GRACE has supported many advances in
water cycle science, the monthly production frequency and
coarse spatial resolution (�150,000 km2 [Rowlands et al.,
2005; Swenson et al., 2006]) limit the utility of GRACE
observations for a majority of applications that require
near-real-time input of much finer resolution earth observa-
tion data. In order to realize the full potential of GRACE
for hydrological applications the basin-scale, column-
integrated, monthly TWS anomalies from GRACE must be
effectively downscaled in space and time, vertically strati-
fied into moisture component anomalies (e.g., soil mois-
ture, groundwater, snow), and extrapolated to the present,
thereby meeting the specificity, timeliness, and high spatial
resolution requirements of most applications.

[6] Data assimilation, which synthesizes the advantages of
observations and numerical land surface models, can be used
to disaggregate GRACE observations temporally, horizon-
tally, and vertically. This was demonstrated by Zaitchik et al.
[2008], who assimilated GRACE TWS anomalies into the
Catchment LSM (CLSM) using a novel implementation of
an Ensemble Kalman Smoother. This GRACE Data Assimi-
lation Scheme (GRACE DAS) was shown to improve model
skill in the simulation of hydrological states and fluxes at
sub-GRACE resolution in the Mississippi basin [Zaitchik
et al., 2008]. Data assimilation serves to reduce uncertainties
in LSM simulation resulting from the input data used to force
the LSMs, simplifications in model parameterization and
limitations in the described physical realism of the model, by

using observation data sets for constraining LSM simulations
of terrestrial hydrology. GRACE-based hydrological data
clearly have the potential for improving global LSMs
[Güntner, 2008; Lo et al., 2010; Werth et al., 2009]. Other
studies have highlighted limitations in the ability of current
models to reproduce the amplitudes in TWS change observed
by GRACE [Schmidt et al., 2006; Hasegawa et al., 2009],
which is partly related to inadequate treatment of ground-
water dynamics [Niu et al., 2007; Rodell et al., 2004]. How-
ever, so far only very few studies have taken the first steps
toward evaluating the benefits of assimilating GRACE TWS
data within a LSM [Zaitchik et al., 2008; Su et al., 2010;
Forman et al., 2011].

[7] In this study we extend the GRACE DAS of Zaitchik
et al. [2008] to the North American domain as part of a larger
project aimed toward integrating enhanced (i.e., via data
assimilation) GRACE TWS data into the U.S. and North
American Drought Monitors. Besides the wider range of
hydroclimatic conditions, the present study goes beyond
Zaitchik et al. [2008] by assessing the potential of GRACE
DAS for drought monitoring and by evaluating GRACE
DAS simulations using soil moisture measurements and
groundwater observations beyond the Mississippi River Basin.
We expect that drought conditions can be identified more
comprehensively and objectively by integrating GRACE-
based drought indicators into the short- and long-term
‘‘objective blends’’ (a fusion of precipitation data, various
standardized indices such as the Palmer Drought Severity
Index, and simple water budget estimates of soil moisture)
that constitute U.S. and North American Drought Monitor
baselines and currently lack valuable information on deep
(root zone and below) soil moisture and groundwater storage
changes. Deep soil moisture and groundwater are valuable as
drought indicators because they encompass the impact of nat-
ural water demand (unlike precipitation indices) and also
continue to adjust after surficial drought indicators such as
surface soil moisture and vegetation greenness have met their
limits of dryness. This paper describes the development of
GRACE-based soil moisture and groundwater drought indi-
cators. These are derived from model simulated fields of soil
moisture and groundwater constrained by GRACE TWS
observations via data assimilation.

[8] Improvements in the hydrologic modeling skill
resulting from the GRACE data assimilation is assessed
using groundwater storage data from monitoring wells dis-
tributed across the United States and soil moisture observa-
tions from the SCAN network. The integration of the
GRACE-based drought indicators into the operational pro-
duction of objective DM blends and their effect on drought
monitoring by the U.S. and North American Drought Moni-
tors will be the topic of a forthcoming paper.

2. Data and Methods
[9] This section describes the specifics of the adopted

GRACE TWS data set (section 2.1), the Catchment Land
Surface Model (CLSM; section 2.2), the GRACE Data
Assimilation System (section 2.3), and the data used to
force and initialize the simulations (section 2.4). A strategy
to increase the water storage capacity of the CLSM to better
accommodate the GRACE anomalies during times of drought
is described in section 2.5, followed by descriptions of the
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U.S. and North American Drought Monitors (DM) and the
method for generating GRACE-based drought indicator per-
centiles (section 2.6). The section concludes with a descrip-
tion of the data sets used to evaluate GRACE DAS output
(section 2.8).

2.1. GRACE Terrestrial Water Storage

[10] GRACE consists of two satellites in identical orbits
about 200 km apart and at 450–500 km altitude, whose veloc-
ities respond to changes in gravity. When they approach a
positive mass anomaly such as a mountain range, gravita-
tional pull increases and the leading satellite accelerates,
increasing the distance between the two, before the second
satellite accelerates and catches up. Distance variations
between the two satellites are measured precisely using a
microwave ranging system and the corresponding time varia-
tions in the gravity field are used to determine changes in the
Earth’s mass distribution at horizontal resolutions no better
than �150,000 km2, with higher measurement accuracy at
larger spatial scales [Wahr et al., 2004]. Monthly to decadal
temporal changes in the gravity field are caused mostly by
mass redistributions in the atmosphere, ocean and continents.
Thus, estimates of changes in total terrestrial water storage
(but not the absolute quantity) can be inferred by modeling
atmospheric and oceanic circulations and removing their
gravitational effects, which are typically much better under-
stood and constrained by observations.

[11] We used GRACE monthly mass grids optimized for
land applications covering the period August 2002 to July
2009 and made available at the GRACE Tellus Web site
(http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland/).
The land product is based on spherical harmonic fields pro-
duced by the University of Texas Center for Space Research
(CSR; version CSR-RL04). Each terrestrial gravity field so-
lution is composed of a set of spherical harmonic coeffi-
cients up to harmonic degree and order 60 that describe the
Earth’s gravity field with the contributions of solid earth
tides, atmosphere, and oceans already removed. Additional
postprocessing steps are required to convert the coefficients
into maps of TWS anomalies, which include smoothing
(300 km half-width Gaussian filter [Wahr et al., 1998]) and
removal of correlated errors (‘‘destriping’’ [Swenson and
Wahr, 2006]) after subtraction of the long-term temporal
mean field (accounting for Earth’s static gravity field). A
correction for postglacial rebound has also been applied to
the data [Chambers et al., 2010]. The spatial averaging (or
smoothing) of GRACE data serves to reduce the contribution
of noisy short-wavelength components of the gravity field
solution. The application of Gaussian and destriping filters
are necessary to make geophysical (‘‘real’’) signals apparent,
but at the cost of some degree of signal attenuation [Klees
et al., 2006]. In an effort to restore the original signal ampli-
tudes, a grid of multiplicative scaling coefficients has been
applied to the monthly land GRACE mass grids. The scaling
coefficients were derived independently of the GRACE data
by applying the same filtering techniques to modeled TWS
data and then computing the signal attenuation at each geo-
graphic location (S. Swenson, Restoring signal loss in GRACE
terrestrial water storage estimates, manuscript in preparation,
2010, available at http://grace.jpl.nasa.gov/files/swenson.
grace.scaling_description_doc_draft.pdf).

2.2. Catchment Land Surface Model

[12] The Catchment Land Surface Model (CLSM)
[Koster et al., 2000; Ducharne et al., 2000] is a numerical
model that ingests near surface meteorological ‘‘forcing’’
data (e.g., rainfall and downward shortwave radiation) and
uses physical equations to determine the evolution of water
and energy states (e.g., soil moisture and temperature) and
fluxes (e.g., evaporation and sensible heat flux). CLSM
abandons the traditional gridded delineation and instead
divides the land surface into irregularly shaped catchments,
with boundaries defined by topography (Figure 1). This is
advantageous when simulating surface hydrological proc-
esses as it allows for a more realistic treatment of horizon-
tal heterogeneity in surface properties in contrast to
conventional land surface models that assume uniform
topographic and hydrologic characteristics at the grid scale.
More importantly for this study, CLSM is one of the few
modern, physically based, distributed land surface models
that simulate unconfined groundwater storage variations,
whereas most have a lower boundary in the unsaturated
zone, typically 2–3 m below the land surface. Groundwater
must be simulated in order to generate terrestrial water stor-
age variations that are analogous to those measured by
GRACE. The catchment delineation (demonstrated for the
East Coast and California Basin in Figure 1) is based on a
30 arc sec (�1 km) digital elevation model from the USGS
[Verdin and Verdin, 1999] and results in an average catch-
ment size of 3640 km2 in North America. For reasons of
computational efficiency, catchments are further divided
into ‘‘tile’’ units, defined by the intersection of catchments
with the overlying atmospheric grid (Figure 1), and model
simulations are performed separately for each ‘‘tile.’’

[13] CLSM simulates subgrid hydrological processes
(root zone soil moisture distributions) based on each catch-
ment’s topographical statistics. With this information the
catchment is partitioned into dynamically varying areas of
different hydrological regimes (‘‘saturated,’’ ‘‘transpiring,’’
and ‘‘wilting’’) each governed by distinct evaporation and
runoff parameterizations [Koster et al., 2000]. These dis-
tinct regimes represent regions where the root zone is fully
saturated, the unsaturated root zone moistures lie above the
vegetation-specific wilting point, and transpiration is shut
off completely, respectively. CLSM simulates the moisture
content of all layers down to and within the saturated zone
as an equilibrium catchment deficit (the average depth of
water needed to bring all of the soil throughout the catch-
ment to saturation). The model imposes a maximum catch-
ment deficit based on a standardized global data set of soil
profile depths (depth to bedrock) compiled from the FAO/
UNESCO Soil Map of the World [Webb et al., 1991]. The
notion of bedrock being a perfectly fixed and unbroken
lower boundary condition is a modeling convenience that
would limit the value of CLSM output for certain local
hydrogeological applications, but it has little bearing on the
primary goal of this study, which is to use model-assimi-
lated groundwater levels to assess drought at scales of tens
of kilometers and larger. However, the maximum catchment
deficit does have implications for the model’s ability to sim-
ulate severe drought conditions as described in section 2.5
and discussed further in section 3. Temporal changes in the
catchment deficit represent column-integrated variations in
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subsurface water storage. Two additional CLSM prognostic
variables, root zone excess and surface excess, provide a
representation of nonequilibrium profile conditions near the
surface, whereas changes in snow water storage are mod-
eled using a state-of-the-art three-layer snow physics
scheme [Stieglitz et al., 2001]. Like most distributed land
surface models, CLSM does not simulate lateral moisture
flows between spatial elements (catchments or tiles). At the
spatial and temporal scales relevant here, lateral flows of
groundwater and soil moisture are negligible compared with
the vertical fluxes. Further, for the contiguous United States,
contributions from surface water and biomass to terrestrial
water storage variability occur at or below the uncertainty
level of GRACE observations [Rodell and Famiglietti,
2001; Rodell et al., 2005a], and the CLSM water reservoirs
thus enable estimation of TWS anomalies (deviations from
the mean) which are directly analogous to the GRACE
observations. Groundwater storage can be calculated by
subtracting the total root zone moisture content (in equiva-
lent heights of water) and snow water equivalent from the
total column integrated water storage.

2.3. GRACE DAS

[14] A detailed description of the GRACE DAS is pro-
vided by Zaitchik et al. [2008, Figure 5] and only a brief
overview is given here. GRACE DAS aims to synthesize
the advantages of GRACE TWS observations and CLSM
soil moisture and groundwater estimates to generate
enhanced estimates of individual TWS components,
informed by GRACE and with the high spatial and tempo-
ral resolutions and timeliness of the model (and its other
input data), based on an ensemble Kalman smoother
(EnKS) algorithm. The modeled moisture fields are

corrected toward the observational GRACE estimate to a
degree determined by the relative uncertainty in the model
and the observations. The EnKS downscales these basin
scale corrections to assimilation increments which are
applied to the numerous subbasin model elements (the
‘‘tiles’’ shown in Figure 1) on the basis of modeled error
correlations between the basin-scale TWS estimates and
the tile space components of TWS, including soil moisture
and groundwater. These error correlations are modeled in
CLSM through an ensemble-based approach using 20
members by applying perturbations to select surface mete-
orological forcing fields and CLSM prognostic variables
[Zaitchik et al., 2008; Liu et al., 2011], which is a common
approach in land data assimilation that accounts for uncer-
tainty in model parameters as well as model structure. Spe-
cifically, spatially correlated, temporally correlated, and
cross-correlated random fields are applied to precipitation
(multiplicative perturbations with standard deviation
s ¼ 0.5), shortwave radiation (additive with s ¼ 0.3 W m�2),
and longwave radiation (additive with s ¼ 50 W m�2) at ev-
ery 3 h forcing time step. Cross correlations (�) were
imposed between perturbations to precipitation and longwave
radiation (� ¼ 0.5), precipitation and shortwave radiation
(� ¼ �0.8), and longwave and shortwave radiation (� ¼
�0.5). Furthermore, the CLSM prognostic variables catch-
ment deficit and surface excess were perturbed at every
20 min model time step with standard deviations of 0.05 and
0.02 mm, respectively. In all cases, a stationary horizontal
error correlation with e-folding scale of 2� (�200 km) was
assumed. Covariance localization was applied to the calcula-
tion of horizontal error correlations to prevent spurious long-
range correlations in the forecast ensemble [Reichle and
Koster, 2003]. We used temporal correlation (e-folding)

Figure 1. Map of hydrologically defined basins for North America used for extracting GRACE-derived
terrestrial water storage anomalies. The catchment delineation used by the Catchment Land Surface
Model (CLSM) is shown for two selected basins. The average size of the catchments in North America
is 3640 km2. The overlaying grid represents the resolution of the atmospheric forcing data. The intersec-
tion of a catchment with the overlying atmospheric grid defines the ‘‘tile,’’ which is the fundamental
CLSM model unit. Within the U.S. domain the basin numbers denote the following named basins: 1, Great
Basin and Colorado; 2, Columbia; 14, Great Lakes; 15, Upper East Coast; 16, East Coast; 17, Missouri;
18, Arkansas-Red and Lower Mississippi; 19, Ohio; 20, Upper Mississippi; 22, Gulf; 26, California.
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scales of 96 h for forcing fields and 24 h for model prognostic
fields. The temporal and horizontal error correlation scales
were estimated on the basis of previous experience with
CLSM [Reichle and Koster, 2003; Zaitchik et al., 2008].

[15] In GRACE DAS, the tiles within a basin are thus
coupled in the data assimilation system through the hori-
zontally correlated errors. The system therefore implicitly
accounts for unmodeled fluxes across catchment bounda-
ries, spatially correlated errors in parameter fields, and spa-
tially correlated errors in meteorological forcing data
[Reichle and Koster, 2003]. Errors in the GRACE estimates
result from measurement and processing errors from multi-
ple sources. We assumed a conservative RMS error esti-
mate of 20 mm for GRACE basin averages [Wahr et al.,
2006]. We also performed a second assimilation run using
a GRACE error of only 10 mm in order to assess the effect
of GRACE uncertainty estimates on data assimilation skill.

2.4. Forcing Data and Model Initialization

[16] The CLSM was run for the period from August 2002
to July 2009 for the North American Domain (Figure 1)
using a combination of forcing data sets as described below.
In addition, a long-term (1948–2009) CLSM simulation was
performed to establish a reference for creating the drought
indicator percentiles in a manner consistent with the U.S.
and North American Drought Monitors (section 2.6).

[17] For the long-term run, the CLSM was forced using
globally consistent, near-surface meteorological data from
Princeton’s Global Meteorological Forcing Data set cover-
ing the period from 1948 to 2006 [Sheffield et al., 2006].
The Princeton data set is 3-hourly with a 1� grid resolution.
It was produced by combining observation-based data sets
with a reanalysis product. The open-loop (OL; no data
assimilation) and data assimilation (DA) runs for the August
2002 to July 2009 period used a combination of observation-
based forcing data sets from the North American and Global
Land Data Assimilation Systems (NLDAS and GLDAS)
(http://ldas.gsfc.nasa.gov/). We used the NLDAS-2 data set
(1/8th� and hourly) over central North America (�125�W to
�67�W, 25�N to 53�N) which is constructed from gauge-
based observed precipitation, bias-corrected shortwave radi-
ation and surface meteorology analysis fields of the NCEP
North American Regional Reanalysis (NARR). GLDAS
forcing (1/4� and 3 hourly) was used for the remainder of
North America consisting of NOAA Climate Prediction
Center’s Merged Analysis of Precipitation product [Xie and
Arkin, 1997], radiation fields from the Air Force Weather
Agency, and atmospheric reanalysis fields from NCEP’s
Global Data Assimilation System (GDAS) [Kleist et al.,
2008]. The NLDAS-2 and GLDAS data sources were fused
and resampled to produce a hybrid 3-hourly LDAS forcing
data set at 1� � 1.25� spatial resolution.

[18] The CLSM was initialized to equilibrium conditions
by using climatological average states from the model for
the precise time of year of initialization. This approach has
been determined to be preferable to the traditional single-
year spin-up method [Rodell et al., 2005b]. The mean state
fields required to initialize the Princeton run (1948–2006)
were generated by looping 10 times through 15 years
(1948–1963) of Princeton forcing and computing the average
of the output from the last complete loop for the precise time
of year of the start of the experimental period (1 January

1948). The same approach was applied to the Hybrid run
(2002–2009) by looping 10 times through 8 years (August
2002 to July 2009) of Hybrid LDAS forcing.

2.5. Increasing the Water Storage Capacity of the
CLSM

[19] Analysis of initial GRACE DAS output revealed
that simulated TWS did not dry as much as GRACE obser-
vations indicated during extended dry periods, because the
dry anomaly observed by GRACE exceeded CLSM’s max-
imum possible catchment deficit. For the purpose of
drought monitoring it is crucial that the CLSM catchment
deficit has a sufficiently broad range of variability to repre-
sent severe drought conditions and thus accommodate the
driest TWS anomalies that could be observed by GRACE
and assimilated. Figure 2 maps the probability of the unal-
tered CLSM reaching the tile-specific dry limits in TWS over
an 8 year simulation period (2002–2009). The dry limits were
determined by forcing CLSM with zero precipitation over the
entire study period. The issue is particularly evident in the
western United States and Mexico where modeled TWS fre-
quently approaches the lower limit defined by the tile-specific
thresholds. The time series records for selected sites in Cali-
fornia and Mexico illustrate that hitting the dry limit can be a
nearly annual occurrence, which would cause an abrupt shut
down of soil moisture and groundwater depletion as the
model has no more water left to remove (Figure 2). The
upshot is that the severity of simulated drought events is
effectively capped. To remedy this situation we increased the
water storage capacity of CLSM by increasing the depth to
bedrock parameter uniformly by 2 m. Note that such an
increase is not inconsistent with the bedrock depth data used
in the original CLSM. The soil profile depths in the global
data set represent minimum possible values because the pro-
file descriptions did not always extend to the subsurface bed-
rock [Webb et al., 1991]. This adjustment resulted in more
realistic simulated dry down that was not constrained by an
artificial dry limit during the 8 year period (Figure 2). Regions
not initially impacted by a too narrow dynamic TWS range
exhibited only minor changes in the TWS variability as a
result of the bedrock depth increase (Figure 2). Additional
sensitivity experiments indicated that this modification had
minimal impacts on simulated fluxes and hydrological states
in these regions (not shown). The effect of the depth to bed-
rock increase on the model’s ability to predict the magnitude
and seasonality of observed TWS and groundwater storage is
discussed in sections 3.1 and 3.2.

2.6. Drought Monitoring

[20] A key objective of this study was to deliver supple-
mental drought indicators, which have been informed by
GRACE TWS data, for integration into the U.S. and North
American Drought Monitors. The U.S. Drought Monitor
(USDM) was conceived in 1999 through the cooperation of
the U.S. Department of Agriculture (USDA) and the
National Drought Mitigation Center (NDMC) with the goal
of centralizing the drought monitoring activities conducted
by federal, state, and academic entities in the United States
[Svoboda et al., 2002]. Similarly, the North American
Drought Monitor (NADM) has been providing integrated
assessments of drought throughout most of Canada, Mex-
ico, and the United States on a monthly basis since 2003
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[Lawrimore et al., 2002]. USDM maps are produced
weekly, led by a rotating group of authors from both fed-
eral agencies and academia. The authors rely on a suite of
short- and long-term objective indicators as well as subjec-
tive input from a network of water and climate experts at
the local and regional level.

[21] The purpose of the drought monitors is to provide
timely, understandable, consensus information on water sup-
ply and drought for decision makers, stakeholders, and the
general public. Both classify drought severity into four major
categories (i.e., D4, D3, D2, and D1) with a fifth category
(D0) depicting ‘‘abnormally dry’’ conditions (Table 1). Each
category is associated with its probability of occurrence,
expressed as a percentile, on the basis of past data. For
instance, D3 (extreme) drought conditions have occurred at
any given location 2%–5% of the time (second to fifth per-
centile). A 1932–2001 data record of drought indicators is
used to estimate the frequency of occurrence of a given
drought category for the location and time of year (month)
in question [Svoboda et al., 2002].

[22] As a starting point, the USDM authors use the previ-
ous week’s map and short- and long-term objective blends
(defined in section 1). The authors then subjectively incor-

porate streamflow and other in situ observations, satellite-
based drought indicators including vegetation greenness,
and reports from local agencies and stakeholders to draw
the final map. None of the previously available indicators
directly represented deep soil moisture and groundwater
storage conditions. Thus our overarching hypothesis, which
is still being evaluated, is that drought conditions can be
described more comprehensively and more objectively by
incorporating GRACE-based soil moisture and groundwater
information into the drought monitor production process.

2.7. GRACE-Based Drought Indicators

[23] Three CLSM prognostic moisture variables were
translated into drought indicators (DI): surface soil mois-
ture (sfsm), root zone soil moisture (rtzsm) and ground-
water storage (gws). The integration of these fields into the
drought monitors requires conversion to percentiles using
an approach consistent with the drought monitor process
(see above). Accordingly, 8 years of GRACE-assimilated
fields of soil moisture and groundwater were converted into
drought indicator percentiles using a climatology of soil
moisture and groundwater based on a 62 year CLSM simula-
tion (1948–2009). Calculating meaningful, current drought
indicator percentiles requires a consistent long-term data re-
cord that extends to present time. The long-term simulation
was forced by two different meteorological forcing sources
(section 2.4), which caused a discontinuity in the output
moisture fields. Figure 3a depicts differences in the 2002–
2006 mean of Princeton and LDAS-forced surface soil mois-
ture output for the North American domain. Biases are
evident in the U.S. Southeast, in parts of Canada, and in
Mexico. The Princeton-forced output fields are considerably
wetter, with soil moisture differences occasionally exceeding
0.11 m3 m�3. The map also demonstrates that biases are

Figure 2. The map of the U.S. and Mexican domain depicts the percentage of days over the 2002–2009
period when the terrestrial water storage (TWS) simulations by CLSM were at or near (within 1 cm) the
tile-specific dry limits. The dry limits were established by forcing the CLSM with zero precipitation over
the simulation period (indicated by the solid black lines with arrows). The accompanying time series
records serve to illustrate how the TWS often drops down to the tile-specific thresholds during extreme
drying events, causing an abrupt shut down of the drying trend as the model has no more water left to
remove. This issue is resolved by increasing the depth to bedrock uniformly by 2 m as shown by the top
(red) curves.

Table 1. Categories of Drought Magnitude Used in the Drought
Monitorsa

Category Drought Severity Level Percentile

D0 Abnormally dry 20–30
D1 Drought, moderate 10–20
D2 Drought, severe 5–10
D3 Drought, extreme 2–5
D4 Drought, exceptional �2

aPercentile thresholds and are depicted for each severity level.
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nonuniform and exhibit complex spatial patterns. While the
Princeton-forced fields are biased in relation to the LDAS-
forced fields, we make no assumptions about biases with
respect to real-world moisture conditions.

[24] Therefore, a statistical adjustment was applied to
the earlier output (1948–2002) on the basis of parallel sim-
ulations over the overlapping period of the Princeton and
LDAS forcing data sets (2002–2006; Figure 3). Following

Figure 3. Bias adjustment scheme for combining CLSM moisture output based on two different mete-
orological forcing sources (LDAS and Princeton) and to ensure consistency of full climatology over the
1948–2009 simulation period. (a) Differences in the mean (2002–2006) of Princeton and LDAS surface
soil moisture (positive values indicate that the Princeton-based soil moisture is larger). (b) The CDF of
the 2002–2006 Princeton-forced moisture fields matched to that of the LDAS-forced moisture fields as
illustrated for a sample catchment tile in Canada. (c) Resulting time series of the original and bias-adjusted
soil moisture data. (d) The bias-corrected Princeton CDF (2002–2006) resulting from step 1 (blue) used in
association with the original Princeton short-term (black) and long-term (red) CDFs to generate a new
long-term CDF (black) representative of the full bias-corrected Princeton data set. (e) Consistency of the
bias-corrected soil moisture values across the entire climatology period.
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Reichle and Koster [2004], the cumulative distribution
function (CDF) of the 2002–2006 Princeton-forced mois-
ture fields was matched to that of the LDAS-forced mois-
ture fields, as illustrated in Figure 3b for a single catchment
tile in Canada. Time series of the original and bias adjusted
soil moisture data are shown in Figure 3c. Next, the resultant
bias-corrected Princeton-forced CDF (2002–2006) was used
in association with the original short-term (2002–2006) and
long-term (1948–2002) Princeton CDFs to adjust the CDF of
the full Princeton-forced data set (CDFbc,1948–2002; Figure 3d)
according to

CDFbc;1948�2002 ¼ ðCDF1948�2002�CDF2002�2006Þ

þ CDFbc;2002�2006:
(1)

[25] The full Princeton forced data set was then bias cor-
rected using CDFbc,1948–2002 and CDF1948–2002 as illustrated
in Figure 3d. This approach was applied to each catchment
tile unit of the North American domain. The advantage of
the adopted bias adjustment technique is that it preserves
the differences observed between the original 2002–2006
and 1948–2002 Princeton CDFs (Figure 3d). The consis-
tency of the bias-corrected soil moisture values across the
entire climatology period (1948–2009) is demonstrated in
Figure 3e.

[26] Finally, modeled surface soil moisture, root zone
soil moisture, and groundwater storage were converted to
percentiles by ranking the values against the bias-corrected
long-term climatology. Location (i.e., tile) and time-spe-
cific (i.e., for each month) CDFs were generated for each
moisture component on the basis of the full bias-corrected
historic data set (1948–2009) and used to convert absolute
moisture values into percentiles corresponding to the
drought severity classification adopted by the drought mon-
itors (Table 1).

2.8. Evaluation Data Sets

[27] Moisture output from GRACE DAS was evaluated
against various independent data sets comprising runoff-
calibrated model simulations of TWS and in situ network
observations of groundwater and soil moisture as described
below.

2.8.1. VIC Model Output
[28] Independent model estimates of TWS for the Cali-

fornia (Figure 1, basin 26), Columbia (2), and Missouri
(17) basins were obtained from a simulation of the variable
infiltration capacity (VIC) macroscale hydrology model
[Liang et al., 1994] as configured and run by Gao et al.
[2010]. While this particular VIC simulation made use of
the same recent-period forcing data, from NLDAS, as did
our CLSM simulations (section 2.4), the Gao et al. [2010]
VIC simulation was calibrated using observed streamflow
across much of the continental United States. The VIC
TWS estimates were derived by adding together soil mois-
ture at three levels and snow water equivalent. Ground-
water is not explicitly represented in VIC, but Gao et al.
[2010] found that the dynamic range of TWS in VIC was
significantly larger than that in the GRACE Tellus product
in both the California and Columbia basins. Motivated in
part by this result, scaling coefficients (described in section
2.1) were developed and are now provided with the
GRACE Tellus product to counteract the signal attenuation
effects of GRACE data processing. Still, VIC’s dynamic
ranges of TWS in these two basins are similar to those of
scaled GRACE Tellus (see section 3.1). Thus it is likely
that overly large modeled soil moisture variations compen-
sate for the lack of groundwater in VIC. Time series of
VIC monthly mean TWS anomalies over the 2003–2007
period were used in our evaluation.

2.8.2. Groundwater Observations
[29] Groundwater storage variations were derived from in

situ groundwater level measurements from 239 monitoring
wells across the United States after rigorous examination of
data quality and suitability (Figure 4a). Daily or monthly
well measurements were acquired from the USGS ground-
water watch (http://groundwaterwatch.usgs.gov/), the Texas
Water Development Board (http://www.twdb.state.tx.us/
gwrd/waterlevels/waterlevels.html), and the Illinois State
Water Survey network (http://www.isws.illinois.edu/warm/
sgwdata/wells.aspx) over the August 2002 to July 2009
GRACE period, as available. Many locations were excluded
from the analysis because of data gaps and we only used
data from wells that captured the seasonal cycle (typically
near-surface unconfined or semiconfined aquifers, as inferred
from available metadata for each well and published reports

Figure 4. (a) Spatial distribution of the 239 monitoring wells used as the basis for validating model
simulations of groundwater storage. (b) Spatial distribution of the Soil Climate Analysis Network
(SCAN) sites providing time series of surface soil moisture measurements. Thiessen polygons were gen-
erated to compute basin average measured time series of groundwater and surface soil moisture. The ba-
sin delineations are as in Figure 1. Basins in gray were masked out from the analysis because of poor
network coverage.
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on the local stratigraphy) and that were not directly affected
by pumping (as indicated in the metadata), meaning that the
well was neither itself pumped nor in the immediate vicinity
of a well being pumped at the times of observation. At each
well a representative value of the specific yield (Sy) was
determined in order to convert well water level measurements
to equivalent heights of stored water. Estimating appropriate
specific yield values is important because uncertainties in Sy
will obscure comparisons between GRACE-based and in situ
groundwater estimates; even a small change in Sy can change
the amplitude of the computed groundwater fluctuations sig-
nificantly [Rodell et al., 2007]. Therefore we put considerable
effort into the selection of Sy values, using any available
metadata on the name and/or material composition of the
geologic formation and an extensive review of reports pub-
lished by the USGS. Resulting estimates ranged from 0.01 to
0.35 with a mean of 0.13.

[30] Daily groundwater storage anomaly time series
were then generated for each well site. The Thiessen poly-
gon method was applied to subdivide the basins and deter-
mine the area weight of each site toward the regional
basin average (Figure 4a). Resulting area-weighted basin-
averaged groundwater anomaly time series were used to
evaluate groundwater storage fluctuations estimated by
GRACE DAS. Spatial undersampling of groundwater lev-
els in regions where appropriate well records are sparse,
particularly in the western United States (Figure 4a), was
another source of uncertainty. Therefore, certain areas
were completely excluded from the analysis because of
poor data coverage.

2.8.3. Soil Moisture Observations
[31] Time series of surface and root zone soil moisture

were obtained from Soil Climate Analysis Network (SCAN)
sites (Figure 4b) operated by the United States Department
of Agriculture (USDA) Natural Resources Conservation
Service (NRCS) through the National Water and Climate
Center (http://www.wcc.nrcs.usda.gov/scan/). Hourly soil
moisture measurements at 5, 10, 20 and 50 cm depths were
extracted from each site over the 2002–2009 study period
and converted into daily time series, disregarding values
recorded during freezing soil temperatures. The 5 cm SCAN
observation was assumed representative of surface soil mois-
ture whereas a layer-depth-weighted average of all 4 levels
was used for deriving root zone soil moisture. Basin-
averaged time series were generated using Thiessen polygons
(Figure 4b). The California (26), Rio Grande (21), Upper
Mississippi (20), and Great Lakes (14) basins were excluded
from the analysis because of poor SCAN network coverage.
The area-weighted basin-averaged soil moisture (sm) time
series were normalized using the maximum and minimum
for each basin (i.e., [smi � smmin]/[smmax � smmin]) before
comparing them to model simulations of surface (0 – 2 cm)
and root zone (0 – 100 cm) soil moisture normalized in a
similar manner.

3. Results
3.1. Terrestrial Water Storage

[32] There is generally a good correspondence between
the open-loop simulated seasonal TWS cycle and that
observed by GRACE for the selected basins, with charac-
teristic wintertime peaks in TWS followed by a summer

trough (Figure 5). As expected, the data assimilation
resulted in time series intermediate between the open-loop
(with bedrock depth increased by 2 m; OL2) simulation
and the GRACE observations (Figure 5). The CLSM open-
loop and VIC time series agree nicely for all three basins as
evidenced by Pearson’s correlation coefficients (r) ranging
from 0.93 to 0.97 (OL) and 0.90 to 0.98 (OL2; Table 2),
which is expected given the similarity of the applied mete-
orological forcing. Interestingly, for the California (CA)
and Missouri (MO) basins the CLSM output based on the
original bedrock depths (OL) provides a better fit to the
VIC data. One plausible explanation may be that VIC is
also impacted by limited water storage capacity to some
extent. This hypothesis is supported by VIC’s simulated

Figure 5. Time series plots of TWS for the California,
Columbia, and Missouri basins comparing monthly vari-
able infiltration capacity (VIC) model output with open-
loop simulations based on the original bedrock depths (OL)
and increased bedrock depths (OL2), data assimilation out-
put (DAS), and GRACE TWS observations.
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TWS for the CA basin, which hit almost the exact same
minimum every year (�11 cm), suggesting that there is no
more water to remove. CLSM simulations with the
increased bedrock depths (OL2) exhibited more realistic
variability in the annual minima. GRACE TWS observa-
tions corroborate the idea that the extent of TWS depletion
varies from year to year in the CA basin (Figure 5).

[33] The average seasonal amplitude of TWS from the
OL simulations in CA (16.3 cm) is significantly smaller
than that indicated by the GRACE observations (27.9 cm).
The open-loop simulations with increased bedrock depths
(OL2) better approximate the dynamic range of the
GRACE observations (Figure 5). The effect of data assimi-
lation (DAS) is generally minimal because the OL2 and
GRACE results already agree fairly well (Figure 5). How-
ever, one might expect a larger correction downward to-
ward the GRACE observations during the summer/fall
minimum. A likely explanation is that the data assimilation
scheme was unable to dry the land surface much more
because it relies too much on perturbations to the precipita-
tion forcing field to generate a spread in the ensemble, and
when precipitation is already low that spread is necessarily
small. (In future experiments we will explore increasing
the direct perturbation of the prognostic water storage vari-
ables to address this issue.) The CLSM specific dry limit
(Figure 2) is not reached in the Columbia (CB) basin, and
as a result there is little difference between the OL and
OL2 simulations (Figure 5).

[34] For the CB basin, however, the VIC simulations are
characterized by a larger amplitude (31.4 cm compared to
20.9 cm for OL2), which is more in line with the GRACE
observations (27 cm). Accordingly, GRACE data assimila-
tion increases the amplitude of the TWS simulations from
20.9 to 21.5 cm on average, resulting in reduced RMS errors
when compared against the VIC simulations (Table 2).

[35] Significantly larger discrepancies between VIC and
GRACE TWS were reported by Tang et al. [2010] and Gao
et al. [2010] for subbasins within the CA and CB basins.
Spatial ‘‘leakage’’ of the gravity signal was implicated as a
major contributor to the apparent underestimation of seasonal
TWS amplitude by GRACE relative to VIC. This leakage of
the gravity signal across the boundaries of a region of interest
is analogous to blurred vision, and it results from GRACE’s

low spatial resolution and the numerical processing required
to extract a time series for a particular region of interest from
the global GRACE gravity solutions [Wahr et al., 1998].
Tang et al. [2010] and Gao et al. [2010] used a GRACE
product that was not optimized for land applications. In this
study, scaling methods were applied to restore some of the
power in the GRACE signal attenuated by data processing
(section 2.1). Using a GRACE product optimized for hydrol-
ogy evidently reduces the biases between the modeled and
observed estimates to within acceptable limits for the dis-
played basins (Figure 5).

3.2. Groundwater Storage

[36] One of the advantages of the GRACE data assimila-
tion system is its ability to decompose the vertically inte-
grated GRACE TWS signal into groundwater, soil
moisture, and snow, which individually are more valuable
for scientific applications. Figure 6 compares open-loop
(OL and OL2) and data assimilation (DAS) simulations of
groundwater storage with well observations that were
resampled to basin averages using Thiessen polygons as
detailed in section 2.8.2. The time series are expressed as
anomalies with respect to the period mean (2002 – 2009).
The monthly GRACE TWS data are also plotted to help
visualize the impact of the data assimilation. Wide discrep-
ancies exist between the OL and OL2 simulations particu-
larly for the Great Basin and Colorado basin and the East
Coast basin (Figure 6). Increasing the bedrock depth pro-
vides the potential for a wider dynamic water storage range
(i.e., larger amplitude). Since more water is allowed to
enter the system there is the opportunity for enhanced sub-
sequent drying as clearly seen in the East Coast basin (Fig-
ure 6). The measured groundwater time series provide
some justification for the larger seasonal amplitudes. While
the OL2 simulations do tend to overestimate the anomalies
during dry and wet events relative to the well observations
(Figure 6), GRACE data assimilation generally succeeds in
adjusting the groundwater storage estimates to better match
the measurements. However, as described in section 2.8.2,
the magnitude of the measured groundwater storage fluctu-
ations is uncertain given the difficulties associated with
assigning representative specific yields for each well site.

[37] Figure 7a evaluates skill improvement associated
with the bedrock depth adjustment defined as skill (r) of
OL2 model output minus skill (r) of OL model estimates.
Here the skill (r) represents the correlation between the time
series of the open-loop estimates (expressed as anomalies
relative to their 2002–2009 climatology) and the anomaly
time series of the basin-averaged groundwater measure-
ments. Skill improvements are evident in the Great Basin
and Colorado basin (1) and the California basin (26), which
frequently encounter water storage simulations within the
dry limit of the model when using the original bedrock
depths (section 2.5). Improvements are also seen in the
Arkansas and Lower Mississippi basin (18), the Upper Mis-
sissippi basin (20) and the upper part of the East Coast basin
(15). Most of the eastern United States is characterized by a
decrease in correlation as a result of increasing the bedrock
depths, but decreases are only statistically significant (5%
level) in the Ohio basin (19).

[38] The skill associated with assimilating the GRACE
TWS data is assessed in Figure 7b, which depicts the skill

Table 2. Pearson’s Correlation Coefficient r and Root-Mean-
Square (RMS) Difference Resulting From Comparing Terrestrial
Water Storage Simulations From VIC and CLSM for the Califor-
nia, Columbia, and Missouri Basinsa

VIC-CLSM

California Columbia Missouri

r RMS (mm) r RMS (mm) r RMS (mm)

VIC-CLSM (OL) 0.96 2.68 0.97 4.62 0.93 1.06
VIC-CLSM (OL2) 0.93 3.29 0.98 3.94 0.90 1.22
VIC-CLSM (DAS) 0.89 4.06 0.97 3.93 0.88 1.50
VIC-GRACE 0.82 6.44 0.96 3.55 0.87 1.76

aSee Figure 5. Results are shown for open-loop simulations with original
bedrock depths (OL) and with bedrock depths uniformly increased by 2 m
(OL2) as described in section 2.5. The data assimilation (DAS) results
were derived using a GRACE observation error of 20 mm. The agreement
with the GRACE terrestrial water storage estimates is also shown. CLSM,
Catchment Land Surface Model; VIC, variable infiltration capacity macro-
scale hydrology model.
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of the data assimilation (DAS) simulations minus the skill
of the OL2 results as in Figure 7a. Table 3 lists the associ-
ated statistics including r and RMS errors for two data
assimilation runs with GRACE observation errors of 20 mm
and 10 mm. Basins that experienced statistically significant
improvements in skill in Figure 7a (basin 1, 18 and 15) also
see increases in data assimilation skill (Figure 7b), which are
all statistically significant (Table 3) suggesting that the
GRACE data contain some independent information that the
assimilation algorithm is able to translate into superior
model estimates. The value of the GRACE data assimilation
is also clearly evident for the Ohio basin (19) where r
increases from 0.86 to 0.94 and the RMS error decreases

from 4.94 to 2.34 (Table 3), which brings the correlation
back to the level of the OL simulations (Figure 7a). This
may suggest that the bedrock depth adjustment is not war-
ranted in this area. Similar tendencies are evident in the
East Coast basin (16) and Great Lakes basin (14), where
TWS only rarely exceeds the maximum possible catchment
deficit of CLSM using the original bedrock depths. How-
ever while the increased bedrock depths may result in a too
wide dynamic water storage range in some parts of the east-
ern United States, it is hard to find justification for using the
original bedrock depths when comparing groundwater time
series for the East Coast basin (Figure 6). Here the data
assimilation results in a time series intermediate between
the OL2 and OL simulations, which appears to provide a
better approximation to the observed values. For drought
monitoring, sufficient simulated water storage capacity is
critical, as it allows the model to distinguish the severity of
different drought events. Further, in this particular applica-
tion it ensures that dry anomalies observed by GRACE do
not exceed the maximum possible catchment deficit of
CLSM (i.e., the dry limit) [Zaitchik et al., 2008] so that the
data assimilation scheme can work as intended.

[39] Negative skill scores (rDAS – rOL2), with statistical
significance at the 5% level, occur in the Missouri basin
(basin 17) and California basin (basin 26; Figure 7b). In
the Missouri basin discrepancies between data assimilation
results and the groundwater measurements is mainly the
result of a drying trend in the fall of 2007 indicated by the
GRACE observations but not reported in the well records
(Figure 6). According to the well records 2006 experienced
the largest dry anomaly whereas 2007 and 2008 were char-
acterized by similar and much wetter conditions. According
to U.S. Drought Monitor maps (not shown) the entire basin
was in a D0 to D3 drought (see Table 1) in 2006 (August–
December) ; in 2007 (September–December) D0 to D2
drought conditions were confined to the western section of
the basin (excluding almost entirely the states of Nebraska,
Iowa, Missouri and Kansas) ; and in 2008 the drought
abated across most of the basin. The difference in drought
conditions between 2007 and 2008 suggested by the U.S.
Drought Monitor conflicts with the observed well time se-
ries record. Many of the wells that were used to calculate
the basin-averaged anomaly time series are concentrated in
the southeastern part of the Missouri basin (Figure 4)
within states that were largely unaffected by drought condi-
tions during 2007, which may have impacted the represen-
tation of basin-wide groundwater storage, despite the use of
Thiessen polygons to area weight the well data. Spatial
undersampling may also be a plausible explanation for the
discrepancy between the data assimilation results and the
groundwater measurements in the CA basin as the majority
of the wells are located in the southwestern section with
only a couple of wells located in the interior of the state
(Figure 4) where climatic conditions are significantly
different.

[40] The data assimilation results displayed in Figures 6
and 7 were derived using a GRACE observation error of
20 mm. This is a fairly conservative estimate and simula-
tion runs assuming a 10 mm RMS error were executed for
comparison. The effect of using a reduced observation error
is generally minor, with correlations decreasing slightly
and RMS errors remaining largely unchanged (Table 3).

Figure 6. Time series plots of groundwater storage for the
Great Basin and Colorado basin, Missouri basin, and East
Coast basin comparing daily well groundwater measure-
ments with open-loop simulations based on the original
(OL) and increased bedrock depths (OL2) and data assimila-
tion output (DAS). GRACE TWS observations are overplot-
ted to better visualize the impact of the data assimilation.
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3.3. Soil Moisture

[41] Figure 8 showcases weekly time series of surface soil
moisture resulting from open-loop (OL2) and data assimila-
tion runs and basin-averaged SCAN in situ observations for
the Ohio (19) and East Coast (16) basins. Generally, there’s
a good correspondence between the model estimates and sur-
face soil moisture measurements when expressed in normal-
ized units (see section 2.8.3). Both basins are characterized
by positive skill scores for data assimilation (rDAS – rOL2)
that are statistically significant for surface soil moisture
(sfsm) as well as root zone soil moisture (rtzsm) (Table 4).
Basins in the midwestern and western United States gener-
ally had insignificant increases/decreases in correlation. Also
for soil moisture, the effect of reducing the GRACE observa-
tion error to 10 mm had a minor effect on the correlation sta-
tistics (not shown). While spatial undersampling due to the
limited number of SCAN sites (Figure 4b) may impact the
comparability between basin-averaged soil moisture meas-
urements and model estimates, the positive skill scores, par-
ticularly in the eastern United States, suggest that GRACE
data assimilation is also valuable for soil moisture. However,

as expected, the assimilation of monthly GRACE TWS data
appears to have a larger impact on groundwater, which varies
slowly, compared to soil moisture, which responds more
quickly to short-term variations in atmospheric forcing.

3.4. Drought Indicators

[42] Drought Indicators (DI) for potential integration
into the U.S. and North American Drought Monitors were
generated by converting moisture fields from GRACE DAS
into DI percentiles using a 62 year climatology of CLSM
simulated soil moisture and groundwater (section 2.7).
Figure 9 illustrates the potential value of GRACE observa-
tions for informing the U.S. Drought Monitor. The GRACE
TWS anomaly signal (Figure 9a) provides a good approxi-
mation to the large scale extent and severity of the drought
conditions recorded by the U.S. Drought Monitor (Figure
9b) in the southeastern United States in August 2007. The
GRACE-based DI percentiles of surface soil moisture, root
zone soil moisture and groundwater storage (Figure 9c)
match the drought monitor map in most places, and con-
tribute additional information on the spatial heterogeneity

Figure 7. (a) Differences in time series correlation coefficients (r) between the OL2 and OL model
simulations of groundwater storage. The skill (r) represents the correlation between measured (wells)
and model-simulated anomaly time series of basin-averaged groundwater. Reddish colors indicate that
model skill is improved as a result of increasing the bedrock depths by 2m. (b) Differences in skill
between the data assimilation (DAS) and open-loop (OL2) simulations. Reddish colors indicate that
model skill is improved as a result of assimilating GRACE TWS data. The actual correlation coefficients
are provided for each basin and simulation type directly on the plots.
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of droughts. Further, the GRACE-based DIs may help to
distinguish hydrological droughts (those that affect deep
water storage and streamflow) from agricultural droughts
(which affect surface soil moisture and vegetation). Unlike
GRACE TWS anomalies (Figure 9a), the DI and drought
monitor percentile data are directly comparable, both being
representative of drought severity relative to location and
season specific dry events.

[43] Figure 10 displays monthly time series drought per-
centile data for California (a) and for four states (AL, GA,
MS, TN) heavily influenced by the 2007 Southeastern
drought (b). The plots compare U.S. Drought Monitor out-
put with groundwater storage (gws) drought indicators (DI)
on the basis of open-loop simulations (OL2) and model-
assimilated GRACE TWS observations (DAS). In CA the
groundwater DI generally provides a reasonable approxi-
mation to the time series of drought severity levels reported
by the U.S. Drought Monitor (Figure 10a). The data assimi-
lation contributes additional skill as evidenced by a signifi-
cant increase in time series correlation coefficients (r) from
0.71 (OL2) to 0.86 (DAS) (Figure 10a). The RMS differ-
ence between the groundwater DI and drought monitor per-
centiles is also markedly reduced as a result of assimilating
the GRACE data (Figure 10a). Improvements are most pro-
nounced toward the end of the time series record where the
moderate to severe drought intensities (D1–D2) are better
approximated by the GRACE-based DIs. Over this time pe-
riod, GRACE recorded the largest TWS dry anomaly sig-
nals in the fall of 2007 and 2008 (Figure 5). While theT
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Figure 8. Time series plots of surface soil moisture for
the Ohio and East Coast basins comparing weekly SCAN
observations with open-loop (OL2) and data assimilation
(DAS) simulations.
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Table 4. Pearson’s Correlation Coefficient r of Soil Moisture Simulations From Open-Loop (OL2) and Data Assimilation (DAS) Runs
Against Daily Time Series of Soil Moisture Obtained From Soil Climate Analysis Network (SCAN) Sites for Eight Basins Across the
United States With Reasonable SCAN Coveragea

Basin

1 2 15 16 17 18 19 22

SCANsfsm-OL2sfsm 0.38 6 0.09 0.82 6 0.03 0.70 6 0.05 0.73 6 0.05 0.71 6 0.05 0.92 6 0.02 0.76 6 0.04 0.80 6 0.03
SCANsfsm-DASsfsm 0.39 0.82 0.77 0.82 0.72 0.89 0.81 0.82
SCANrtzsm-OL2rtzsm 0.17 6 0.12 0.83 6 0.03 0.72 6 0.05 0.66 6 0.06 0.71 6 0.05 0.87 6 0.03 0.78 6 0.04 0.76 6 0.04
SCANrtzsm-DASrtzsm 0.20 0.83 0.77 0.77 0.71 0.83 0.84 0.77

aThe 95% confidence intervals are given for the OL2 results. On the basis of these, bold font indicates basins with a significant increase in r relative to
OL2 at the 5% significance level, whereas italics indicate a significant decrease in r relative to OL2 at the 5% level. Results are shown for a GRACE ob-
servation error of 20 mm. The subscripts sfsm and rtzsm denote surface and root zone soil moisture, respectively. See Figure 1 for basin denomination.

Figure 9. Correspondence between (a) the GRACE monthly water storage anomaly fields, (b) the U.S.
Drought Monitor product, and (c) drought indicators based on model-assimilated GRACE TWS observa-
tions during the drought in the southeastern United States in August 2007. In Figure 9b A, H, and AH
define agricultural drought, hydrological drought, and a mix of A and H, respectively.
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bedrock depth adjustment clearly improved the model’s
ability to represent drought severity from 2007 onward, the
model was still not fully capable of accommodating the
GRACE anomalies. Reducing the GRACE observation
error only marginally increased the increments during this
period. This suggests that increasing the direct perturbation
of the prognostic water storage variables may be necessary
(section 3.1). The improvement in data assimilation skill
observed for CA (Figure 10a) conflicts with the time series
correlation results obtained using groundwater measure-
ments as the assumed truth (Figure 7b). As previously
noted, the limited spatial coverage and representativeness
of the wells in CA may be a reason for the conflicting evi-
dence as the concentration of wells in the southwestern
region of the state may not properly reflect the dryness con-
dition of the basin as a whole.

[44] For the four U.S. southeastern states (AL, GA, MS,
TN) the statewide averaged groundwater DI percentiles
capture the increasing frequency and severity of the
drought from 2005 onward (Figure 10b). The agreement
between the GRACE-based DI and the drought monitor
percentiles is described by a time series correlation coeffi-
cient of 0.88, which is a significant improvement over the
open-loop results (r ¼ 0.82) (Figure 10b). These results are
consistent with the evaluation based on groundwater well
observations over the eastern United States, which yielded
significant improvements in skill because of the assimila-
tion of GRACE data (Figure 7b).

[45] The surface soil moisture and root zone soil mois-
ture DIs were also highly correlated with the drought moni-
tor output for the four U.S. southeastern states with time
series correlation coefficients (rDAS) of 0.89 and 0.88,
respectively (not shown). However, the impact of the
GRACE data assimilation was less pronounced (rOL2 of
0.87 and 0.86, respectively). In CA, the ability of the soil
moisture DIs to capture drought conditions reported by the
U.S. Drought Monitor was significantly reduced in compari-
son with the groundwater DI with characteristic time series r
on the order of 0.56 (not shown). This suggests a closer cou-
pling between the surface and groundwater compartments in
the eastern United States and a generally greater drought

detection value of the groundwater DI, at least with respect to
the information used to draw the drought monitor maps. This
is not surprising, as the effects of drought may prevail long
after climatic conditions have improved because of the slow
process of aquifer recharge, while soil moisture responds rap-
idly to short-term variations in atmospheric forcing.

4. Discussion and Conclusions
[46] The GRACE data assimilation system (GRACE

DAS) was applied to North America as part of a larger
effort to demonstrate that drought conditions can be identi-
fied more accurately and objectively by integrating spa-
tially, temporally, and vertically disaggregated GRACE
data into the U.S. and North American Drought Monitor
products, substituting for ground-based observations of
groundwater and soil moisture which are currently lacking.
The specific objectives of this paper were to describe the
methodology behind the development of drought indicators
(DI) based on model-assimilated GRACE terrestrial water
storage (TWS) data and to assess improvements in hydro-
logical modeling skill and drought detection resulting from
the assimilation of GRACE TWS data.

[47] The monthly production frequency and coarse spatial
resolution of GRACE TWS fields limit their utility for
applications that require near-real-time input with fine spa-
tial and temporal resolutions. This study confirms that data
assimilation may be the key to realizing the full potential of
GRACE TWS anomalies for hydrological applications, as it
facilitates spatial and temporal downscaling, extrapolation
to near real time, and vertical stratification into groundwater
and soil moisture components, which individually are more
useful for scientific applications.

[48] By increasing the water storage capacity of the
Catchment land surface model we made it more accommo-
dating of GRACE TWS anomalies during times of severe
drought. This was accomplished by increasing the depth to
bedrock, and it generally improved the model’s ability to
represent the magnitude and seasonality of observed TWS
and groundwater storage. Using an extensive data set of
groundwater observations from monitoring wells across the
U.S. as ‘‘truth’’, the skill of modeled groundwater storage

Figure 10. Time series plots of groundwater storage (GWS) drought indicator (DI) and U.S. Drought
Monitor percentile data for (a) California and (b) the U.S. Southeast (including the states of Alabama,
Georgia, Mississippi, and Tennessee). The GWS DIs were based on open-loop model estimates (OL2)
and model-assimilated GRACE TWS observations (DAS). Time series correlation coefficients (r) and
root-mean-square errors (RMS) between the model-estimated DIs and the drought monitor output are
also shown.
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was shown to be significantly improved in major parts of the
United States as a result of assimilating the GRACE obser-
vations. Negative skill scores (significant decrease in skill
associated with assimilating GRACE) in the Missouri and
California basins are likely attributable to spatial undersam-
pling, with existing monitoring sites being unable to properly
capture the prevailing drought conditions representative of
the basins as a whole. Despite a limited number of in situ
soil moisture observation sites, positive skill scores (signifi-
cant increase in skill associated with assimilating GRACE)
particularly in the Eastern U.S. provided evidence that the
GRACE TWS data contain useful independent information
that the assimilation algorithm was able to translate into
superior soil moisture estimates.

[49] A 62 year bias-corrected climatology of model
simulated soil moisture and groundwater was used to con-
vert GRACE-assimilated moisture fields into drought indi-
cator (DI) percentiles for potential integration into the U.S.
and North American Drought Monitors. Initial comparisons
between the model-based drought indicators and U.S.
Drought Monitor output indicated improved correlations at-
tributable to the assimilation of GRACE TWS data. Thus
GRACE data assimilation helps to overcome limitations of
land surface models, which include imperfect soil, vegeta-
tion, and topographical parameters, errors in the meteorologi-
cal forcing data, and simplified or incomplete representation
of surface water and energy processes such as lateral surface
and groundwater flows. The GRACE-based groundwater
storage drought indicator proved to be particularly useful,
reflecting the longer-term meteorological anomalies associ-
ated with drought. The results highlight the potential value of
drought indicators based on model-assimilated GRACE
TWS observations for identifying drought conditions more
comprehensively and objectively.

[50] One source of uncertainty is the contribution of
groundwater mining (withdrawals in excess of net recharge)
to groundwater storage variations. Water management and
groundwater withdrawals are not simulated by CLSM (which
may in fact be advantageous for assessing natural impacts of
drought), but their effects are detected by GRACE. Thus
GRACE DAS likely indicates some level of groundwater
depletion in overappropriated aquifers that is not caused
(directly) by drought. For example, the High Plains aquifer
of the central United States and the Central Valley aquifer in
California are known to have experienced water level
declines over the last several decades because of ground-
water abstraction for irrigation. We believe the adverse con-
sequences of groundwater abstraction impacts for the
GRACE-based drought indicators have so far been minor,
because the drought indicators in the areas of the overappro-
priated aquifers have yet to show wetness percentiles that are
significantly lower than those of the U.S. Drought Monitor.
An explanation for this is that the mean rate of anthropogenic
groundwater storage decline at the river basin scale of the
GRACE observations as applied here is at least an order of
magnitude smaller than the natural seasonal to interannual
variability of groundwater storage. Nevertheless, it is an
issue that must continue to be monitored.

[51] More in depth analyses are ongoing to establish the
benefit of the GRACE data assimilation for drought moni-
toring activities across the nation and the North American
domain as a whole. As part of this process near-real-time

GRACE-based drought indicators are currently being made
available to the U.S. and North American Drought Monitor
community for independent assessment of their value for
informing operational drought monitor products (http://
www.drought.unl.edu/MonitoringTools/NASAGRACEDa-
taAssimilation.aspx). Furthermore, the added benefit of
incorporating the GRACE-based drought indicators will be
analyzed through comparison with the current suite of
short- and long-term objective indicators and by correlating
detectable differences at the regional and local scale to the
final U.S. and North American Drought Monitor products.

[52] Acknowledgments. This project was supported by NASA’s
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